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Abstract

An analysis of the theoretical displacement field around a single dip-slip fault at depth reveals that normal and reverse fault drag develop

by perturbation flow induced by fault slip. We analytically model the heterogeneous part of the instantaneous displacement field of an

isolated two-dimensional mode II fault in an infinite, homogeneous elastic body in response to fault slip. Material on both sides of the fault is

displaced and ‘opposing circulation cells’ arise on opposite sides of the fault, with displacement magnitudes increasing towards the center of

the fault. Both normal and reverse drag can develop at the fault center depending on the angle between the markers and the fault; normal drag

develops there for low angles (!30–408) and reverse drag for higher angles. A comparison of the theoretical results with published models

and natural examples reveals that the characteristics of normal and reverse fault drag are largely insensitive to the scale and rheology of the

faulted rocks and that drag forces generated by frictional resistance need not be the primary cause of fault drag. Fault drag has some

interesting geometric implications for normal and reverse fault terminology emphasizing the importance for discrimination of vertical

separation and throw. Furthermore, our results lead us to propose an alternative model for the formation of rollover anticlines above normal

faults.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fault drag refers to the deflection of curved markers

adjacent to a fault (e.g. Kearey, 1993). Normal drag (Fig. 1)

refers to markers that are convex in the direction of slip and

reverse drag to markers that are concave in the direction of

slip (e.g. Hamblin, 1965). Normal drag is probably the more

commonly recognized phenomenon. Several explanations

have been proposed to explain reverse drag, such as pre-

brittle failure followed by reversal of movement on the

fault, elastic and isostatic rebound, diapirism, sagging,

differential compaction, and topological irregularities rep-

resented by fault overlap zones. Recognizing that reverse

drag is not an abnormal structure but a common feature

associated with normal faults, Hamblin (1965) suggested a

model in which normal slip along a listric fault results in the
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formation of a rollover anticline. This model has appealed to

petroleum geologists because of the potential of the

anticline to form a hydrocarbon trap (e.g. Tearpock and

Bischke, 2003) and has been widely accepted in structural

geology textbooks (e.g. Twiss and Moores, 1992). However,

Barnett et al. (1987) suggested that reverse drag results from

a local decrease in displacement in the fault-normal

direction and warned that hanging wall rollover anticlines

cannot be used to distinguish listric from planar normal

faults. Furthermore, Reches and Eidelman (1995) have

shown by means of numerical modeling that fault drag

reflects non-uniform deformation near a fault and that

reverse drag may also form above anti-listric faults. While

Reches and Eidelman (1995) demonstrated that drag effects

can change along a single fault from reverse at its center to

normal at its termination, they concluded (a) that reverse

drag is mainly associated with ‘short’ faults (of unspecified

length), and (b) that there is no consistent rule-of-thumb for

fault drag. Grasemann et al. (2003) investigated with a finite

element model the deflection of markers around a fault of

finite length in a linear viscous medium. They considered

various far-field velocity boundary conditions and
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Fig. 1. Fault drag of a central marker along normal and reverse (thrust)

faults. Normal drag refers to markers that are convex in the direction of slip

and reverse drag to markers that are concave in the direction of slip. The

angle q is the acute angle measured from the fault to the undeformed central

marker (anticlockwise angles are positive). The presented work demon-

strates that low angles favor normal drag and high angles favor reverse

drag.
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compared the results with natural examples collectively

called flanking structures (Passchier, 2001). Confirming the

results of Reches and Eidelman (1995) that the drag of

marker lines may change along a fault, Grasemann et al.

(2003) showed that the drag of a central marker is only a

function of the angle q, the acute angle measured from the

fault to the undeformed central marker (anticlockwise

angles are positive). At low angles (jqj!w308) faults

develop a normal drag but if the marker meets the fault at

higher angles (jqjOw308) reverse drag develops (compare

Fig. 1). Surprisingly, the model results suggest that the type

of fault drag is independent of the kinematic vorticity

number of the far-field deformation, but no further

explanation why normal or reverse drag forms is given

and therefore its origin is still unknown.

Our aim here is to demonstrate how normal and reverse

drag can develop naturally because of heterogeneous

deformation around a fault, in accord with previous

suggestions (Barnett et al., 1987; Reches and Eidelman,

1995). We use predictions of standard linear elasticity

theory to describe the displacement fields around a fault

idealized as a mode II fracture. Note that we do not consider

fault-inception folds (e.g. van der Pluijm and Marshak,

2004) that include all folds that developed during ductile

deformation preceding faulting (e.g. fault folds, flexure

faults). Furthermore, we do not model drag folds, which are

folds that have formed by shear parallel to layering

(Ramberg, 1963) but focus on folds that develop in response

to single slip along a fault. However, we are aware that

fault-inception folds, drag folds or pre-brittle failure

followed by reversal of movement on the fault might result

in similar geometric pictures discussed in this work. The

major goal of this study is to explain the instantaneous

development of fault drag along a single fault by

investigating the heterogeneous part of the deformation

field caused by fault slip. For the progressive developments

of large strain, complex flanking structures, which may
record rotation of faults and fault slip reversals, the readers

are referred to the work of Exner et al. (2004) and references

cited therein.
2. Conceptual model

When a fault slips, heterogeneous stress and displace-

ment fields develop in the surrounding rock (Pollard and

Segall, 1987). In order to understand the associated drag

effects, we idealize a fault as a simple two-dimensional

crack with plane strain sliding displacement (mode II) in an

infinite elastic body. We also postulate that the driving stress

Ds, the difference between the shear traction on the fault

before and after slip (Pollard and Segall, 1987), is uniform.

The slip distribution on such a fault is elliptical, reaching a

maximum at the center of the fault and dropping to zero at

the fault tips (Rippon, 1985; Barnett et al., 1987; Pollard and

Segall, 1987; Walsh and Watterson, 1989). A nearly

elliptical slip pattern also is conceivable for a fault that is

more than two fault lengths below the surface. Decidedly

non-elliptical and asymmetric slip distributions can arise,

however, for many reasons (Bürgmann et al., 1994), such as

non-uniform driving stresses, irregular fault geometries,

interactions with other faults, or intersections with a free

surface (e.g. the earth’s surface). Where the slip distribution

is not elliptical, the complete displacement field will yield

drag patterns different to those we describe here. We focus

on certain first-order processes that lead to fault drag, and do

not address important questions pertaining to the initiation

and propagation of faults. Nor do we investigate the

progressive development of fault drag along slip surfaces,

which rotate or even may record a reversal of fault slip

(Exner et al., 2004). We also ignore complex fault

geometries. For modeling purposes we assume that all

displacement except along the fault is accommodated by

continuous deformation, although we are aware that on

many natural faults a significant amount of discontinuous

deformation is accommodated through secondary syn- and

antithetic faults, secondary fracturing, or solution precipi-

tation mechanisms (e.g. Walsh and Watterson, 1991; Martel

and Boger, 1998).

The model here is based on linear elasticity theory and is

idealized in terms of geometry, material properties and

boundary conditions in order to highlight the first order

influences of fault drag formation. The model captures the

mechanics of an idealized single slip event or a series of

events that do not include any stress relaxation. However,

by setting Poisson’s ratio to 0.5 and replacing the modulus

of rigidity with the coefficient of viscosity and displacement

magnitudes with velocity, the results can be directly

translated to solutions for incompressible Newtonian

viscous materials (Grasemann et al., 2003). Viscoelastic

constitutive properties that would account for stress

relaxation during accumulation of slip in a series of events

are not considered. We emphasize, however, that the similar
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geometries of fault drag in different lithologies and in a wide

range of non- to high-grade metamorphic rocks (Passchier,

2001) suggest that certain basic characteristics of fault drag

are largely scale independent. Existing theoretical treat-

ments also reveal only a minor dependence on the rheology

of the host rock (e.g. Barr and Houseman, 1992; Grasemann

and Stüwe, 2001). In light of these findings, we contend that

an elastic analysis should provide insight into fault drag.

Because we are interested in the instantaneous develop-

ment of fault drag, which is caused by heterogeneous

deformation induced by the fault slip, we ignore the

homogeneous part of the deformation, which is a common

procedure in analytical solutions (e.g. ignoring the second

part of eq. 28.8 which is related to the remote stress in

Pollard and Segall (1987)). In other words we focus on the

heterogeneous deformation caused by the relative motion of

a mode II crack ignoring any homogeneous background

field. This displacement field is similar to the perturbation

flow (e.g. Cobbold, 1975; Mancktelow, 1991), which has

been recently used by Passchier et al. (2005) to classify

natural structures. As a consequence the homogeneous

background field and its orientation are immaterial for the

origin (not the sense of slip, magnitude of drag, etc.) of fault

drag, because homogeneous deformation cannot bend/fold/

drag initially linear marker lines. For the further progressive

development of fault drag the readers are referred to

analogue and numerical models published elsewhere

(Grasemann et al., 2003; Exner et al., 2004; Wiesmayr

and Grasemann, 2005; Passchier et al., 2005).

The fault in our two-dimensional model extends along

the x-axis from xZKa to xZa. Displacements are confined

to the x, y-plane and do not vary in the z-direction (i.e. we

consider a plane strain case). Slip occurs if the ambient

remote shear stress parallel to the fault differs from the shear

traction on the fault, the difference of both is known as the

driving stress Ds. However, the uniform ambient stress field

causes a homogeneous deformation field that does not

contribute to fault drag (planar markers can be deformed but

they remain planar). Therefore, we focus on the displace-

ment field associated with slip on the fault, which results in

a non-homogeneous deformation field responsible for the

fault drag.
2.1. Stress functions for a mode II fault

We calculate the displacement field around a fault that

has slipped using Westergaard stress functions (Wester-

gaard, 1939; Tada et al., 2000). The interested reader can

consult (Pollard and Segall, 1987; Bürgmann et al., 1994;

Martel, 1997, 1999) for more detailed mathematical and

physical aspects of these functions.

The displacement components ux and uy are found from

two complex functions, and Z (Tada et al., 2000):
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where n is Poisson’s ratio, G is the modulus of rigidity (i.e.

shear modulus), and
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The stress functions that yield the displacement field

solely due to slip on a fault with a uniform driving stress are

(Tada et al., 2000):
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in order to yield correct values for the stress

functions in all four quadrants of the complex plane (for a

detailed discussion see Martel (1997)).
2.2. Displacement field near the center of a fault

The displacement field associated with fault slip is

complex and heterogeneous. As a result, slip on a fault will

cause an offset marker to be deformed as well. In order to

describe this deformation as clearly as we can, we discuss

the x- and y-components of the displacement field separately

(Fig. 2). We pay particular attention to the effects on a

marker that passes through the center of a fault; we

henceforth call such a marker a central marker. As we will

show, the deformation near the center of a fault is relatively

uniform, so a marker does not need to pass precisely through

the center of a fault to display the drag characteristics we

discuss below.

First consider the displacement in the x-direction of a

central marker perpendicular to the fault (Fig. 2a). The

displacements along the marker are exclusively in the x-

direction (uyZ0) and increase towards the fault:
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The radical terms can be expanded using the binomial

theorem. Dropping terms of (y/a) higher than first order

yields a simpler approximate expression:
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(4b)

This matches eq. 8.59b of Pollard and Segall (1987) for

the approximate value of ux anywhere within roughly half a

fault length from the fault center. Interestingly, Eq. (4b) is



Fig. 2. Displacement fields in the (a) x-direction ux and (b) y-direction uy generated by dextral slip along a mode II fault fromK1!x!1 at yZ0. Poisson’s ratio

nZ0.3 and the ratio of driving stress to the modulus of rigidity Ds/GZ1/100. In order to illustrate the heterogeneous deformation of the elastic solutions,

displacements in the figures are exaggerated by a factor of 100 (Pollard and Segall, 1987). Marker lines (dotted line) perpendicular or at high angles to the fault

will be primarily deformed by the discontinuous displacement field ux into a concave shape in the shear direction and therefore record a reverse drag. Marker

lines parallel or at low angles to the fault will be displaced predominantly by the continuous displacement field uy into a convex shape recording a normal drag.

The total displacement field composed of ux and uy are shown in Fig. 3.

Fig. 3. Total displacement field near a dextral mode II fault and

corresponding deformation of marker lines, initially passing through the

origin at different angles. Marker lines meeting the fault at higher angles

(Ow30–408) are dominated by the influence of ux resulting in reverse fault

drag. At lower angles (!w30–408), however, where ux is less significant,

the deformation of the marker lines are mainly a function of uy and

therefore result in a normal fault drag (compare with Fig. 2).
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not a function of x, reflecting the fact that ux changes little

with x near the center of the fault. The term in square

brackets corresponds to the fault wall displacement at the

center of the fault (i.e. half the maximum slip). The

remainder of the expression reveals a nearly linear decay in

ux with distance from the fault; note that the terms

containing Poisson’s ratio are positive because y is less

than 0.5. The fault-parallel component of displacement

causes a central marker perpendicular to the fault to be bent

concave in the direction of slip: a reverse drag contribution

develops. The same conclusion applies to fault-perpendicu-

lar markers near the fault center in light of Eq. (4b), as well

as to originally planar markers of other orientations.

Now consider the displacement in the y-direction

(Fig. 2b). We start by considering uy along the plane of

the fault, which has a simple, exact analytical form (Pollard

and Segall, 1987):

uyjyZ0 ZDs
ð1K2nÞ

2G
x; jxj%a (5a)
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2G
ðxK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 Ka2
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Figs. 2b and 3 show a counterclockwise rotation of the

medium containing the fault for the ‘apparent right-lateral’

sense of slip depicted. For an opposite sense of slip, the

rotation would be clockwise. Adjacent to the fault (jxj%a,

yZ0G) uy is directly proportional to the distance from the

center of the fault and the driving stress (see Eq. (5a)). This
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means that the rock bordering the fault experiences a

uniform rotation, with the amount of rotation scaling with

the driving stress (Martel, 1999). Pollard and Segall (1987)

show that Eq. (5a) is also the first-order solution for uy

anywhere within roughly half a fault length from the fault

center. Analogous to the ux field near the fault being nearly

independent of x, the uy field near the fault is nearly

independent of y (compare Fig. 2a and b). The uy field near

the fault thus would cause a marker adjacent and parallel to

the fault to be rotated but not bent. With increasing distance

r from the fault center though, uy (as well as ux) decreases,

eventually decaying as a/r. The rotation becomes negligible

far from the fault. As a result, originally planar markers that

are oblique to the fault are rotated more strongly near the

fault center than they are far from the fault. This rotation

change causes the marker to be bent (dragged) in a direction

that is concave in the direction of slip. However, the fault-

normal component of displacement causes a central marker

oblique to the fault to be bent convex in the direction of slip:

a normal drag contribution develops (this superposition of a

normal drag on the reverse drag is discussed in more detail

below, compare Fig. 7a and c). Although our focus is

primarily on deformation of a marker near a fault, we show

one example of how deformation along a long marker can

be complicated (Fig. 2b). Consider a marker that intersects

the fault at a shallow angle: at xZa, uy attains its maximum

amplitude (Eqs. (5a) and (5b)) and for xOa, uy decreases

monotonically towards zero. The marker is deformed in a

complex wave-like shape with an inflexion point opposite

the fault tip.

The total displacement field around a fault reflects a

superposition of both the ux and uy components (Fig. 3).

Whether a central marker displays normal or reverse drag

will depend on the relative contributions of the displace-

ment field to reverse drag and normal drag. Given the

complexity of the displacement field around a fault, the

sense of drag can vary with the orientation of a marker,

where a marker intersects a fault, and the position along the

marker. The difference between normal drag and normal

drag superposed on reverse drag is outlined in more detail in

the discussion section.
Fig. 4. Plot of fault angle q versus the magnitude of the curvature k of the

central marker. Negative values for k indicate a normal drag, whilst marker

lines with a positive k have a reverse drag. Close to the fault (1/10 of the

fault half-length) normal drag arises for fault-marker angles q!w408, with

reverse drag occurring for fault-marker angles qOw408 (dotted line). If the

central marker is evaluated at a larger distance to the fault (3/4 of the fault

half-length) normal drag arises for fault-marker angles q!w308, with

reverse drag occurring for fault-marker angles qOw308 (solid line).
2.3. Drag of markers

The sense of drag depends on whether a marker becomes

concave or convex in the direction of slip. We investigate

now how the relative orientation of a fault and a marker

affects the direction of marker curvature near a fault using

the exact analytical expressions for the displacement field

obtained from Eqs. (1a), (1b), (3a) and (3b). We calculate

the curvature vector by fitting an osculating circle with

radius R to three points on the deformed marker. The

curvature k, measured in diopters (mK1), is given by:

kZ
1

R
(6)
Close to the fault (i.e. within 1/10 of the fault half-length)

our results show that normal drag (negative diopters) at the

fault center arises for fault-marker angles q!w408, with

reverse drag occurring for fault-marker angles qOw408

(dotted line in Fig. 4). However, in natural examples the

drag very close to the fault might be difficult to recognize

and it has therefore been suggested to investigate fault drag

up to a distance of about half the fault-length (e.g. Barnett et

al., 1987). If the central marker is evaluated at a larger

distance to the fault (e.g. within 3/4 of the fault half-length)

normal drag arises for fault-marker angles q!w308, with

reverse drag occurring for fault-marker angles qOw308

(solid line in Fig. 4), which is consistent with results from

finite element solutions of Grasemann et al. (2003).

Although our focus is on the fault center, we also

investigate how the sense of drag can vary with position

along a fault. The theoretical results here allow four classes

of drag structures to be distinguished (Fig. 5). However, in

order to understand the heterogeneous deformation induced

by slip along a fault, we modeled the heterogeneous part of

the deformation field without an imposed background strain.

Therefore, the instantaneous structures in Fig. 5 cannot be

directly compared with finite structures represented by the

natural examples in Fig. 6. However, analogue and

numerical models of finite deformation and the comparison

of model results with natural examples (Grasemann et al.,

2003; Exner et al., 2004; Wiesmayr and Grasemann, 2005)

show that at low finite strain the geometries are very similar

to the instantaneous structures presented in this study. For

this reason, we think it is useful to refer to natural examples

in the following discussion of our modeled structures,

although we are aware that a direct comparison is

inadequate.
2.3.1. Normal fault-normal drag

Large-scale examples are so-called ‘low-angle’ normal

faults, which commonly reveal a normal drag (e.g.

Wernicke, 1981). Other natural examples of this structure

at smaller scale are shear bands (Berthé et al., 1979; White,



Fig. 5. Array of markers deflected by the displacement field (Eqs. (1a) and (1b)) generated by a fault of finite length (parameters and exaggeration see Fig. 2). In

order to compare the model results with faults cutting through a horizontal layering or bedding, the coordinate system of Fig. 3 is rotated until the marker lines

are parallel to a horizontal reference line. Dependent on the angle between the markers in the far field and the fault, four different structures can be

distinguished: (a) normal fault–normal drag; (b) normal fault–reverse drag; (c) reverse fault–normal drag; (d) reverse fault–reverse drag.
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1979), which are secondary synthetic slip surfaces.

Statistically shear bands have low angles to the shear zone

boundary (Passchier, 1984; Goscombe et al., 2004), but

depending on the rheology, anisotropy and rotation during

progressive deformation, shear bands may be also oriented

at higher angles (Platt, 1984; Williams and Price, 1990;

Stock, 1992). Typical natural examples of shear bands are

illustrated in many publications. For example, Snoke et al.

(1998) illustrate shear bands from many different rock types

developed under a broad range of metamorphic conditions.

Fig. 5a shows a central marker (in a heavy line) with normal

drag from our model for qZ208. Interestingly, normal drag

also develops along the fault in the two quadrants where slip
results in a decrease in the mean compressive stress,

whereas reverse drag develops in the quadrants where the

mean compressive stress increases. Although the orientation

of the fault in the field example given in Fig. 6a is higher

than in the instantaneous solution (Fig. 5a), the overall

geometry of the fault drag of marker lines matches the

geometry predicted by our model fairly well.
2.3.2. Normal fault-reverse drag

Hamblin (1965), who coined the term ‘reverse drag’,

provided a superb example from the Hurricane Fault (Grand

Canyon, Arizona) nearly four decades ago. Grasemann and

Stüwe (2001), Passchier (2001) and Grasemann et al. (2003)



Fig. 6. Natural examples of structures modeled in Fig. 5. (a) Normal faults (shear band boudinage) in greenschist facies marbles mylonites showing a marked

normal drag (N Naxos, Greece; N37811 026.200/E25830 048.800). (b) Normal fault with reverse drag from the same outcrop. (c) Reverse fault with normal drag in

the Tethyan sediments of the fold and thrust belt in Spiti (Pin Valley, NW-Himalaya; N32805 053.0400/E78809 059.64 00). Note the similarity of the structure with a

fault propagation fold. (d) Reverse fault associated with reverse fault drag in marbles of the Goantagab Domain (Kaoko Belt, Namibia;

S20840 0033.000/E014825 0049.700).
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described other examples of reverse drag-along faults with

extensional slip. Surprisingly few studies exist, however,

that focus on the origin of reverse drag (e.g. Hamblin, 1965).

Fig. 5b shows a central marker (in a heavy line) with reverse

drag from our model for qZ408. Note that the sense of drag

changes along the model fault in Fig. 5b in a manner

analogous to that of Fig. 5a. Our analytical results,

represented in Fig. 5b, are consistent with the numerical

results of Grasemann et al. (2003), and also similar to the

field example of Fig. 6b. Reverse drag associated with

regional normal faults is commonly referred to as a rollover

anticline. Rollover anticlines typically are attributed to slip

along listric normal faults, even though many reported

examples of reverse drag do not occur along listric faults.

Our model shows that reverse drag does not require curved

fault geometry. We discuss this point further below.
2.3.3. Reverse fault-normal drag

Regional reverse faults with normal drag are widely
recognized and are commonly attributed to folding that

coincides with the upper tip of a thrust fault (e.g. Boyer,

1986; Suppe and Medwedeff, 1990). Passchier (2001) also

presented natural examples of reverse faults with normal

drag, terming the drag features ‘s-Type flanking folds’. An

exceptional illustrative example from the Pin Valley in the

NW-Himalayas is given in Fig. 6c. Most of the published

examples are associated with a fault ramp that is connected

to a flat detachment fault, and the footwall commonly is

considered as undeformed (e.g. Jackson and McKenzie,

1983). We find that neither a flat detachment fault nor a rigid

footwall is required for normal drag on a reverse fault.

Footwall deformation along reverse faults generally has

been interpreted as indicating folding preceding faulting

during early development of break-thrust folds (Fischer et

al., 1992). Nevertheless, McConnell et al. (1997) presented

excellent natural examples of fault-related folds, where the

hanging walls and footwalls are deformed, displacements

decrease up- and down-dip from the centers of the faults,
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and fault ramps do not join a flat-lying detachment. The

kinematic model of McConnell et al. (1997) for folding

yields geometric forms similar to our mechanical model

(Fig. 5c). Note that normal drag of the central marker and at

the leading edge of the reverse may be accompanied by

reverse drag between the fault centers at the trailing tip. Our

results thus should be distinguishable from folds considered

to be break-thrust folds (Wiesmayr and Grasemann, 2005).

2.3.4. Reverse fault-reverse drag

Fig. 6d shows reverse drag along a reverse fault at a steep

angle (w608) to a mylonitic foliation. Although this

structure has been predicted by mechanical finite element

models (Grasemann et al., 2003), to our knowledge no

natural example has been previously published. In the upper

part of the picture above the tip of the fault a leading edge

fold can be recognized. Towards the middle of the picture,

the slip along the fault increases, revealing a pronounced

reverse drag effect. This field example is consistent with our

model results of Fig. 5d.
3. Discussion

3.1. Drag forces versus flow perturbation

Explanations of normal drag commonly have appealed to

intuition. A typical suggestion invokes a reduction in the

flow velocity of the wall rocks owing to frictional resistance

along the fault. Therefore fault drag has been used to infer

the sense of slip along faults (e.g. Hills, 1963; Billings,

1972; Twiss and Moores, 1992). This practice seems highly

suspect to us, especially since the sense of drag can change
Fig. 7. Both vertical separation vs and throw t can be used to investigate possible

(d)): if the throw is less than the vertical separation (t1!vs), then normal drag mus

then no net drag occurs ( in (a) and (b)). If throw exceeds the vertical separation

must exceed the vertical separation (t1,2,3Ovs in (c) and (d)) and an offset horizonta

normal drag ( ), no drag ( ) or reverse drag ( ).
along the same side of a fault. If drag was produced by

frictional resistance to slip, then the amount of drag should

increase with frictional resistance. However, mechanical

models predict that if frictional resistance to slip increases,

the slip on a fault decreases (Pollard and Segall, 1987) but

also the drag decreases (Reches and Eidelman, 1995;

Grasemann and Stüwe, 2001). Thus if frictional resistance

accounted for drag, then the largest fault drag would be

expected along faults with vanishing amounts of slip (i.e.

where faults are absent; compare Fig. 6a, b and d). This

conclusion is untenable. Finally, our investigation reveals

that both normal and reverse drag can occur along a single

fault (e.g. Figs. 5b and 6d; see also Mansfield and

Cartwright, 2000), and that normal drag can be superposed

on reverse drag (Figs. 5a and 6a). Frictional resistance

cannot account for these observations either. We therefore,

reject frictional resistance as a primary cause for fault drag.
3.2. Normal drag sensu stricto, vertical separation, and

throw

Our analyses (Fig. 5a and c) and our observations (Fig. 6a

and c) of faults show that ‘normal drag’ is in fact a

superposition of a normal drag on the reverse drag

associated with the fault-parallel displacement field. This

has some interesting geometric implications for normal and

thrust fault terminology. In our discussion here we follow

the terminology of Tearpock and Bischke (2003), which

reflects usage in the petroleum exploration community. We

take vertical separation (vs) to be the vertical distance

between very widely spaced points, which lie in a section

perpendicular to the fault plane on opposing sides of a fault

along a once continuous horizontal marker (Fig. 7). Throw
fault drag geometries along normal ((a) and (c)) and reverse faults ((b) and

t exist ( in (a) and (b)). If the throw equals the vertical separation (t2Zvs),

(t3Ovs) reverse drag must exist ( in (a) and (b)). If vsZ0, then the throw

l marker must record reverse drag. Superposed on this reverse drag could be
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(t) is the vertical distance between piercing points on

opposing walls of the fault. By these definitions, vertical

separation is measured using points far from a fault, whereas

throw relies on points that border a fault. As a result, vertical

separation is independent of local displacements near a fault

that produces fault drag, whereas throw depends strongly on

fault drag. Pure normal drag or no drag is only possible

geometrically if the vertical separation is greater than zero

(Fig. 7).

Both vertical separation and throw can be used to

investigate possible fault drag geometries of a marker

through the center of a dip-slip fault (Fig. 7). Three cases are

possible. First, the throw is less than the vertical separation

(t1!vs), then normal drag must exist (Fig. 7a and b).

Second, if the throw equals the vertical separation (t2Zvs),

then no net drag occurs. Third, if throw exceeds the vertical

separation (t3Ovs) reverse drag must exist. If no vertical

separation occurs across a fault, then the throw must exceed

the vertical separation (t1,2,3Ovs in Fig. 7c and d). In such a

case, an offset horizontal marker must record reverse drag.

Superposed on this reverse drag could be normal drag (t1),

no drag (t2) or reverse drag (t3). A major result of this simple

geometrical observation is that any fault with no vertical

separation must have fault drag. Additionally, if no drag

occurs across a fault, then vertical separation must occur.

Because the established terminology is insufficient to

describe complex fault drag geometries, Coelho et al.

(2005) have recently suggested a new quantitative descrip-

tive terminology using cubic Bézier curves.

3.3. Listric faults and rollover anticlines

The concept of a listric (based on the Greek word listron

or shovel), concave-up normal fault was introduced by

Suess (1909) as part of his description of curved faults in the

coal mines of Saint-Eloi and Léon (northern France). They

are now recognized in many places around the world (e.g.

Shelton, 1984). Three features have been considered as

characteristic of listric normal faults: a flat detachment

surface, a rigid footwall, and hanging wall strata with a dip

that increases toward a normal fault (i.e. rollover anticline or

reverse drag; Shelton, 1984). Balanced cross-section

analyses of listric faults are widely applied to investigate

these features, to quantify regional extension, and in the

exploration for hydrocarbons (e.g. Tearpock and Bischke,

2003). Rollover anticlines, for example, are one of the most

important hydrocarbon traps (Tearpock and Bischke, 2003

and references cited therein). Since these methods also are

used to assess the geometry of normal faults, which can seal

subsurface fluid flow, they are important in defining the

volume of a hydrocarbon reservoir (Hardman and Booth,

1991). The impact and widespread use of listric fault models

prompt us to re-examine two of the commonly held

perceptions about these faults.

We start with the assumption that a hanging wall rollover

implies a listric fault geometry (e.g. Shelton, 1984 and
references therein). This assumption seems highly precar-

ious to us. First, although listric faults appear common, not

all normal faults have listric geometries. For example,

seismic reflection data commonly indicate normal fault

traces that are not concave up in cross-sections (e.g.

Jackson, 1987). Additionally, earthquake data provide little

evidence for the notion that large-scale normal faults

invariably flatten with depth. Second, reverse drag and

rollover-like geometries occur at all scales and within a

broad range of different homogeneous and heterogeneous

rheologies (compare the presented and referenced examples

in this work), including faults that have non-listric

geometries. Third, in addition to our results, many

mechanical models of planar faults (King et al., 1988;

Gibson et al., 1989; Ma and Kusznir, 1993; Reches and

Eidelman, 1995; Grasemann et al., 2003) show reverse drag.

So listric fault geometries are not a prerequisite for reverse

drag to develop. Our results show instead that reverse drag

can be a consequence of heterogeneous perturbation

deformation as a result of fault slip. Although other

mechanisms before, during or after faulting could affect

the development of reverse fault drag, we are in accord with

Barnett et al. (1987) who suggested that the displacement

field associated with slip is the primary cause for reverse

drag (e.g. Fig. 5b).

The second perception that appears suspect to us is that

the footwall of a normal fault is rigid. This assumption has

no mechanical basis, and it certainly does not make sense in

cases where rocks of similar lithology (or rheology) are

juxtaposed by faulting (Kusznir et al., 1991). Indeed,

geodetic measurements for single slip events, high-resol-

ution three-dimensional seismic data sets, and detailed

investigations of faults in outcrops commonly reveal reverse

drag profiles in both the hanging wall and footwall

(Kasahara, 1981; McConnell et al., 1997; Mansfield and

Cartwright, 2000). A few reasons might contribute to the

perception that fault footwalls are rigid.

The first is that displacements (and drag effects) in the

footwall can be much less than those in the hanging wall.

Such an association would be strong evidence for a stiffness

difference for faults that are substantially deeper than their

down-dip extent (i.e. faults that behave as though they were

in an infinite body). Mechanical analyses of normal faults

that intersect or interact with the earth’s surface, however,

reveal decidedly different slip profiles from faults far from

the surface. Surface-breaching faults or near-surface faults

tend to have a slip maximum at or near the surface rather

than near the fault center; they offset markers in a manner

somewhat similar to that in the lower half of Fig. 5b.

Perhaps more significantly though, unlike faults in an

infinite elastic body with no free surface, normal faults in an

elastic half-space generate an asymmetric displacement

field, with greater displacement (and more pronounced

drag) in the hanging wall than in the footwall (Ma and

Kusznir, 1993; Roberts and Yielding, 1994; Langley, 2000).

The contrast in displacement could be mistaken for an
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increase in rigidity in the footwall, when it actually reflects a

difference in the ‘effective thickness’ of the units on the

opposing sides of the fault. For a fault near the surface, the

hanging wall is thin relative to the ‘infinitely thick’ footwall.

Rigidity (i.e. the shear modulus) is an intrinsic property of a

rock and does not depend on the geometry of a rock body. It

should not be confused with ‘flexural rigidity’, the

resistance to bending, which is highly dependent on the

geometry of a body (Turcotte and Schubert, 2002).

A second reason that might contribute to the perception

that fault footwalls are rigid is that reverse drag on either

side of the fault may be associated with little of no drag on

the opposing side, especially if structural levels above or

below the central marker are observed (compare Figs. 4

and 5).

A third reason relates to the ease of preparing physical

models with rigid footwalls (e.g. McClay et al., 1991) that

yield hanging wall deformation akin to that in outcrops or

inferred in seismic cross-sections. The similarity in results

does not mean that the footwalls of faults in the earth are

rigid though.

Listric fault models and the associated hanging wall

rollover have been extensively applied by many workers to

quantify regional extension, probably due to the ease with

which hanging wall collapse may be restored using the

vertical shear construction or one of its many derivatives

(Yamada and McClay, 2003). However, because these

techniques commonly are predicted on the assumption of a

listric fault geometry (Tearpock and Bischke, 2003), they

will necessarily predict a listric geometry even for faults that

are planar. A simple example how a listric fault can be

balanced from a modeled planar normal fault with reverse

drag is given in Fig. 8.
Fig. 8. Listric fault balanced from a modeled planar normal fault with

variable displacement and reverse drag of the central marker line. Using the

reverse drag of the central marker in the hanging wall and the dip of the

fault at the intersection with the marker as input parameters, the graphical

dip domain technique (Yamada and McClay, 2003) can be applied by

incorrectly assuming that the reverse drag has been generated by constant

slip along a listric fault. The dip of the domains has been obtained by

determining the Coulomb collapse angle (728) from the reverse drag shape

(Tearpock and Bischke, 2003). The technique will necessarily result in a

listric geometry, although the result is obviously wrong.
4. Conclusions

The presented analytical solutions of slip along mode II

faults and the resulting fault drag are mechanically

grounded predictable geometries, which match natural

structures. Therefore, we conclude:
(1)
 Slip along a fault causes a heterogeneous displacement

field, with increasing displacement magnitudes towards

the fault. This heterogeneous displacement field will

cause marker units to be deformed in a manner

consistent with what has been called fault drag.
(2)
 Near the center of a fault, the sense of fault drag is

mainly a function of the angle between the marker and

the fault plane: low angles favor normal drag and high

angles favor reverse drag.
(3)
 Normal and reverse drag can develop along the same

side of a single fault.
(4)
 A comparison of model results, published models, and

natural examples reveals that many key characteristics

of normal and reverse fault drag are largely insensitive

to the scale of a fault and the rheology of the host rock.
(4)
 Frictional resistance to slip along a fault cannot explain

observations of fault drag, and is therefore not the

primary cause of fault drag.
(5)
 Understanding the spatial geometry and development of

fault drag is important for discrimination of vertical

separation and throw of normal and thrust faults. Faults

recording no vertical separation in the far field

inherently have a reverse drag on which a normal

drag can be superimposed.
(6)
 The concept of rollover anticlines forming above listric

extensional faults may be alternatively explained by

reverse fault drag. The reverse drag model may be a

superior explanation for rollover anticlines, especially

for normal faults that do not flatten into a subhorizontal

detachment or are not listric at all.
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